Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[μ-2-methoxy- N^{\prime}-(2-oxidobenzoyl)benzo-hydrazidato(3-)]dipyridinetrizinc(II)

Zong-Xue $Y u^{a}$ and $Y u-X i$ Sun $^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemical Engineering, Chongqing Three Gorges College, Wanzhou 404000, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.050$
$w R$ factor $=0.132$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title trinuclear zinc(II) complex, $\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$], the central $\mathrm{Zn}^{\mathrm{II}}$ ion has a distorted square-planar coordination involving two O and two N atoms from two bridging $\quad N^{\prime}$-(2-hydroxybenzoyl)-2-methoxybenzohydrazide ligands. The coordination around the terminal $\mathrm{Zn}^{\mathrm{II}}$ ions is square planar, involving two O atoms and one N atom of the bridging ligand and one N atom from a pyridine molecule.

Comment

Transition metal compounds are present in the active sites of several important classes of metalloproteins. The study of Schiff base compounds is of great interest in various fields of chemistry (Downing \& Urbach, 1969; Ganeshpure et al., 1996; Bosnich, 1968; Costes et al., 1995; Duda et al., 2003). The crystal structures of zinc(II) complexes have been widely studied (Howard et al., 2006; Granifo et al., 2006; Tong, 2005; You, 2005). As an extension of work on the structural characterization of complexes, the preparation and crystal structure of the title trinuclear $\operatorname{zinc}(\mathrm{II})$ complex, (I), is reported here.

Received 7 November 2006 Accepted 21 November 2006

The molecular structure of (I) is illustrated in Fig. 1. Selected bond distances and angles are given in Table 1. Each $\mathrm{Zn}^{\mathrm{II}}$ atom has a square-planar geometry. The central Zn 2 atom is coordinated by two O and two N atoms from two bridging trianionic $\quad N^{\prime}$-(2-hydroxybenzoyl)-2-methoxybenzohydrazide ligands, whereas the other two $\mathrm{Zn}^{\mathrm{II}}$ atoms, Zn 1 and Zn 3 , are coordinated by two O atoma and one N atom from one bridging ligand and the N atom of a pyridine molecule. The two bridging trianionic ligands therefore act as quinquedentate ligands through one phenolate O atom, two keto O atoms and two N atoms, and two pyridine molecules act as

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
monodentate ligands through the N atom, forming a trinuclear zinc(II) complex.

The trans angle $\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 4$ at the central Zn 2 is close to 180°; however, the other trans angle O3-Zn2-O7 deviates significantly from the ideal 180°. The four trans angles at Zn 1 and Zn 3 are close to 180°, ranging from 162.99 (13) to 174.51 (11) ${ }^{\circ}$. All the other angles subtended at the three $\mathrm{Zn}^{\mathrm{II}}$ atoms are close to 90°, indicating that they are in a distorted square-planar configuration. The dihedral angle between the C6-C11 and C14-C19 benzene rings is $27.5(3)^{\circ}$, and that between the C21-C26 and C29-C34 benzene rings is 32.3 (3) ${ }^{\circ}$.

As illustrated in Fig. 2, a weak C5-H5 ..O3 3^{i} interaction $\left[\mathrm{H} 5 \cdots \mathrm{OB}^{\mathrm{i}}=2.43 \AA, \mathrm{C} 5 \cdots \mathrm{O}^{\mathrm{i}}=3.307(5) \AA\right.$ and $\mathrm{C} 5-$ $\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{i}}=157^{\circ}$; symmetry code: (i) $\left.1-x, 1-y, 1-z\right]$ is observed in the crystal structure of (I). The unit cell contains two solvent-accessible voids, each with a volume of $43 \AA^{3}$, but no solvent molecules were found in the crystal structure.

Experimental

All chemicals were obtained from commercial sources and used without purification. 2-Hydroxybenzoyl chloride ($31.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-methoxybenzoyl chloride ($34.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in dry methanol (50 ml). The mixture was stirred while hydrazine monohydrate (0.2 mmol , about 10.2 mg) was added dropwise over 30 min at room temperature to give a clear yellow solution. To this solution was added a methanol solution (25 ml) of $\mathrm{Zn}(\mathrm{OAc})_{2}$ $(0.4 \mathrm{mmol}, 73.6 \mathrm{mg})$ and pyridine $(0.4 \mathrm{mmol}, 31.7 \mathrm{mg})$, with stirring. The resulting solution was allowed to stand in air for 27 d , after which time pale-green plate-shaped crystals of (I) formed at the bottom of the vessel on slow evaporation of the methanol.

Crystal data

```
[Zn}(\mp@subsup{\textrm{C}}{15}{}\mp@subsup{\textrm{H}}{11}{}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{O}}{4}{}\mp@subsup{)}{2}{}(\mp@subsup{\textrm{C}}{5}{}\mp@subsup{\textrm{H}}{5}{}\textrm{N}\mp@subsup{)}{2}{}
Mr}=920.8
Monoclinic, P2 / /c
a=13.0201 (10) \AA
b=18.4015 (14) \AA
c=16.6352 (12) \AA
\beta=110.088 (1) }\mp@subsup{}{}{\circ
V=3743.2 (5) A }\mp@subsup{}{}{3
```

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.634 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \mu=1.97 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Plate, pale green } \\
& 0.33 \times 0.18 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Figure 2

The packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.663, T_{\text {max }}=0.858$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0646 P)^{2}\right.} \\
&+2.3964 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.55 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 4$	$1.880(3)$	$\mathrm{Zn} 2-\mathrm{O} 3$	$1.951(2)$
$\mathrm{Zn} 1-\mathrm{N} 3$	$1.888(3)$	$\mathrm{Zn} 2-\mathrm{O} 7$	$1.955(2)$
$\mathrm{Zn} 1-\mathrm{O} 2$	$1.950(3)$	$\mathrm{Zn} 3-\mathrm{N} 5$	$1.904(3)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$1.990(3)$	$\mathrm{Zn} 3-\mathrm{O} 8$	$1.915(2)$
$\mathrm{Zn} 2-\mathrm{N} 2$	$1.934(3)$	$\mathrm{Zn} 3-\mathrm{O} 6$	$1.974(3)$
$\mathrm{Zn} 2-\mathrm{N} 4$	$1.936(3)$	$\mathrm{Zn} 3-\mathrm{N} 6$	$2.008(3)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{N} 3$	$93.23(12)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{O} 7$	$102.20(11)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 2$	$174.51(11)$	$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{O} 7$	$81.56(11)$
$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{O} 2$	$81.45(11)$	$\mathrm{O} 3-\mathrm{Zn} 2-\mathrm{O} 7$	$148.65(12)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{N} 1$	$91.73(13)$	$\mathrm{N} 5-\mathrm{Zn} 3-\mathrm{O} 8$	$91.91(11)$
$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 1$	$174.25(13)$	$\mathrm{N} 5-\mathrm{Zn} 3-\mathrm{O} 6$	$80.68(11)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$93.51(12)$	$\mathrm{O} 8-\mathrm{Zn} 3-\mathrm{O} 6$	$172.11(10)$
$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 4$	$170.49(13)$	$\mathrm{N} 5-\mathrm{Zn} 3-\mathrm{N} 6$	$162.99(13)$
$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{O} 3$	$81.76(11)$	$\mathrm{O} 8-\mathrm{Zn} 3-\mathrm{N} 6$	$94.69(12)$
$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{O} 3$	$99.64(12)$	$\mathrm{O} 6-\mathrm{Zn} 3-\mathrm{N} 6$	$93.17(12)$

All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2002); data reduction: SAINTPlus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank Chongqing Three Gorges College for a research grant and Qufu Normal University for a technology grant.

References

Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627-632.

Bruker (2002). SMART (Version 5.628), SAINT-Plus (Version 6.22) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Costes, J. P., Dominiguez-Vera, J. M. \& Laurent, J. P. (1995). Polyhedron, 14, 2179-2187.
Downing, R. S. \& Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 59775983.

Duda, D., Govindasamy, L., Agbandje-McKenna, M., Tu, C., Silverman, D. N. \& McKenna, R. (2003). Acta Cryst. D59, 93-104.
Ganeshpure, P. A., Tembe, G. L. \& Satish, S. (1996). J. Mol. Catal. A113, L423L425.
Granifo, J., Garland, M. T. \& Baggio, R. (2006). Acta Cryst. C62, m56m59.
Howard, R. H., Bochmann, M. \& Wright, J. A. (2006). Acta Cryst. C62, m293m296.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tong, Y.-P. (2005). Acta Cryst. E61, m1771-m1773.
You, Z.-L. (2005). Acta Cryst. C61, m383-m385.

[^0]: © 2006 International Union of Crystallography All rights reserved

